You submitted this homework on Thu 20 Feb 2014 3:00 AM PST. You got a score of 11.00 out of 15.00 . You can attempt again in 10 minutes.

Question 1

Consider the toy key exchange protocol using an online trusted 3rd party (TTP) discussed in Lecture 9.1. Suppose Alice, Bob, and Carol are three users of this system (among many others) and each have a secret key with the TTP denoted k_{a}, k_{b}, k_{c} respectively. They wish to generate a group session key $k_{A B C}$ that will be known to Alice, Bob, and Carol but unknown to an eavesdropper. How would you modify the protocol in the lecture to accomodate a group key exchange of this type? (note that all these protocols are insecure against active attacks)

Your Answer

Score Explanation
Alice contacts the TTP. TTP generates a random $k_{A B}$ and a random $k_{A C}$. It sends to Alice
$E\left(k_{a}, k_{A B}\right), \quad$ ticket $_{1} \leftarrow E\left(k_{b}, k_{A B}\right), \quad$ ticket $_{2} \leftarrow E\left(k_{c}, k_{A C}\right)$.
Alice sends ticket ${ }_{1}$ to Bob and ticket ${ }_{2}$ to Carol.
Alice contacts the TTP. TTP generates a random $k_{A B C}$ and sends to Alice
$E\left(k_{a}, k_{A B C}\right), \quad$ ticket $_{1} \leftarrow E\left(k_{b}, k_{A B C}\right), \quad$ ticket $_{2} \leftarrow E\left(k_{c}, k_{A B C}\right)$
.
Alice sends $k_{A B C}$ to Bob and $k_{A B C}$ to Carol.

Alice contacts the TTP. TTP generates a random $k_{A B C}$ and sends to Alice
$E\left(k_{a}, k_{A B C}\right), \quad$ ticket $_{1} \leftarrow k_{A B C}, \quad$ ticket $_{2} \leftarrow k_{A B C}$.
Alice sends ticket ${ }_{1}$ to Bob and ticket ${ }_{2}$ to Carol.

Total
1.00 /
1.00

Question 2

Let G be a finite cyclic group (e.g. $G=\mathbb{Z}_{p}^{*}$) with generator g. Suppose the Diffie-Hellman function $\mathrm{DH}_{g}\left(g^{x}, g^{y}\right)=g^{x y}$ is difficult to compute in G. Which of the following functions is also difficult to compute:

As usual, identify the f below for which the contra-positive holds: if $f(\cdot, \cdot)$ is easy to compute then so is $\mathrm{DH}_{g}(\cdot, \cdot)$. If you can show that then it will follow that if DH_{g} is hard to compute in G then so must be f.

Your Answer	Score	Explanation
$f\left(g^{x}, g^{y}\right)=(\sqrt{g})^{x+y}$	$\checkmark 0.25$	It is easy to compute f as $f\left(g^{x}, g^{y}\right)=\sqrt{g^{x} \cdot g^{y}}$.
$f\left(g^{x}, g^{y}\right)=g^{x(y+1)}$	$\vee 0.25$	an algorithm for calculating $f\left(g^{x}, g^{y}\right)$ can easily be converted into an algorithm for calculating $\mathrm{DH}(\cdot, \cdot)$. Therefore, if f were easy to compute then so would
DH, contrading the assumption.		
$f\left(g^{x}, g^{y}\right)=g^{x+y}$	$\vee 0.25$	It is easy to compute f as $f\left(g^{x}, g^{y}\right)=g^{x} \cdot g^{y}$.

Total

1.00 /

1.00

Question 3

Suppose we modify the Diffie-Hellman protocol so that Alice operates as usual, namely chooses a random a in $\{1, \ldots, p-1\}$ and sends to Bob $A \leftarrow g^{a}$. Bob, however, chooses a random b in $\{1, \ldots, p-1\}$ and sends to Alice $B \leftarrow g^{1 / b}$. What shared secret can they generate and how would they do it?

Your Answer Score Explanation

secret $=g^{a / b}$. Alice computes the secret as $B^{1 / a}$ and Bob computes A^{b}.
secret $=g^{a b}$. Alice computes the secret as B^{a} and Bob computes A^{b}.
secret $=g^{b / a}$. Alice computes the secret as B^{a} and Bob computes $A^{1 / b}$.

(oret $=g^{a / b}$. Alice computes the $\quad \checkmark 1.00 \quad$\begin{tabular}{l}
This is correct since it is not difficult

secret as B^{a} and Bob computes $A^{1 / b}$.

\quad

to see that both will obtain $g^{a / b}$
\end{tabular}

Total
1.00 /
1.00

Question 4

Consider the toy key exchange protocol using public key encryption described in Lecture 9.4. Suppose that when sending his reply $c \leftarrow E(p k, x)$ to Alice, Bob appends a MAC $t:=S(x, c)$ to the ciphertext so that what is sent to Alice is the pair (c, t). Alice verifies the tag t and rejects the message from Bob if the tag does not verify. Will this additional step prevent the man in the middle attack described in the lecture?
it depends on what public key encryption system is used.
(no $\vee 1.00$ an active attacker can still decrypt $E\left(p k^{\prime}, x\right)$ to recover x and then replace (c, t) by $\left(c^{\prime}, t^{\prime}\right)$ where $c^{\prime} \leftarrow E(p k, x)$ and $t \leftarrow S\left(x, c^{\prime}\right)$.

yes

- it depends on what

MAC system is used.

Total

$$
1.00 \text { / }
$$

$$
1.00
$$

Question 5

The numbers 7 and 23 are relatively prime and therefore there must exist integers a and b such that $7 a+23 b=1$. Find such a pair of integers (a, b) with the smallest possible $a>0$. Given this pair, can you determine the inverse of 7 in \mathbb{Z}_{23} ?

Enter below comma separated values for a, b, and for 7^{-1} in \mathbb{Z}_{23}.

You entered:

\square

Your Answer	Score	Explanation	
10	x	0.00	
Total	$0.00 / 1.00$		

Question Explanation

$7 \times 10+23 \times(-3)=1$. Therefore $7 \times 10=1$ in \mathbb{Z}_{23} implying that $7^{-1}=10$ in \mathbb{Z}_{23}.

Question 6

Solve the equation $3 x+2=7$ in \mathbb{Z}_{19}.
You entered:
\square

Your Answer	Score	Explanation	
14	\times	0.00	
Total	$0.00 / 1.00$		

Question Explanation

$x=(7-2) \times 3^{-1} \in \mathbb{Z}_{19}$

Question 7

How many elements are there in \mathbb{Z}_{35}^{*} ?
You entered:
24

Your Answer	Score	Explanation	
24	\checkmark	1.00	
Total	$1.00 / 1.00$		

Question Explanation
$\left|\mathbb{Z}_{35}^{*}\right|=\varphi(7 \times 5)=(7-1) \times(5-1)$.

Question 8

How much is $2^{10001} \bmod 11$? (please do not use a calculator for this)
Hint: use Fermat's theorem.

You entered:

Your Answer	Score	Explanation	
2	\checkmark	1.00	
Total	$1.00 / 1.00$		

Question Explanation

By Fermat $2^{10}=1$ in \mathbb{Z}_{11} and therefore $1=2^{10}=2^{20}=2^{30}=2^{40}$ in \mathbb{Z}_{11}. Then $2^{10001}=2^{10001 \text { mod10 }}=2^{1}=2$ in \mathbb{Z}_{11}.

Question 9

While we are at it, how much is $2^{245} \bmod 35$?
Hint: use Euler's theorem (you should not need a calculator)

You entered:

\square

Your Answer	Score	Explanation	
32	\checkmark	1.00	
Total	$1.00 / 1.00$		

Question Explanation

By Euler $2^{24}=1$ in \mathbb{Z}_{35} and therefore $1=2^{24}=2^{48}=2^{72}$ in \mathbb{Z}_{35}. Then $2^{245}=2^{245 \bmod 24}=2^{5}=32$ in \mathbb{Z}_{35}.

Question 10

What is the order of 2 in \mathbb{Z}_{35}^{*} ?
You entered:

Your Answer	Score	Explanation	
1	\times	0.00	
Total	$0.00 / 1.00$		

Question Explanation

$2^{12}=4096=1$ in \mathbb{Z}_{35} and 12 is the smallest such positive integer.

Question 11

Which of the following numbers is a generator of \mathbb{Z}_{13}^{*} ?

| Your Answer | | Score | Explanation |
| :--- | :--- | :--- | :--- | :--- |

Question 12

Solve the equation $x^{2}+4 x+1=0$ in \mathbb{Z}_{23}. Use the method described in lecture 9.3 using the quadratic formula.

You entered:

6, 10×0.00

Total 0.00 / 1.00

Question Explanation

The quadratic formula gives the two roots in \mathbb{Z}_{23}.

Question 13

What is the 11 th root of 2 in \mathbb{Z}_{19} ? (i.e. what is $2^{1 / 11}$ in \mathbb{Z}_{19})
Hint: observe that $11^{-1}=5$ in \mathbb{Z}_{18}.
You entered:
13

Your Answer	Score	Explanation	
13	\checkmark	1.00	
Total	$1.00 / 1.00$		

Question Explanation

$2^{1 / 11}=2^{5}=32=13$ in \mathbb{Z}_{19}.

Question 14

What is the discete log of 5 base 2 in \mathbb{Z}_{13} ? (i.e. what is $\operatorname{Dlog}_{2}(5)$)
Recall that the powers of 2 in \mathbb{Z}_{13} are

$$
\langle 2\rangle=\{1,2,4,8,3,6,12,11,9,5,10,7\}
$$

You entered:

	Score	Explanation	
Your Answer	\checkmark	1.00	
9	$1.00 / 1.00$		
Total			

Question Explanation

$2^{9}=5$ in \mathbb{Z}_{13}.

Question 15

If p is a prime, how many generators are there in \mathbb{Z}_{p}^{*} ?

Your Answer	Score	Explanation
$\varphi(p-1)$		

$$
\varphi(p)
$$

- \sqrt{p}
$(p+1) / 2$
Total 1.00 /
1.00

